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Abstract Intrinsically disordered proteins (IDPs) have

recently attracted the attention of the scientific community

challenging the well accepted structure–function paradigm.

In the characterization of the dynamic features of proteins

nuclear magnetic resonance spectroscopy (NMR) is a

strategic tool of investigation. However the peculiar

properties of IDPs, with the lack of a unique 3D structure

and their high flexibility, have a strong impact on NMR

observables (low chemical shift dispersion, efficient sol-

vent exchange broadening) and thus on the quality of NMR

spectra. Key aspects to be considered in the design of new

NMR experiments optimized for the study of IDPs are

discussed. A new experiment, based on direct detection of
13Ca, is proposed.
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The lack of a unique protein 3D structure and the high extent

of flexibility have recently been shown to provide functional

advantages in a variety of biologically relevant situations

challenging structural biology and demanding an expansion

of the structure–function paradigm into an additional

dimension of disorder to be able to describe also intrinsically

disordered proteins (IDPs) (Romero et al. 1998; Garner et al.

1998; Wright and Dyson 1999; Tompa 2002, 2009, 2012;

Dyson and Wright 2005; Sickmeier et al. 2007; Dunker et al.

2008). In this context NMR is a strategic tool of investigation

(Dyson and Wright 2004; Mittag and Forman-Kay 2007;

Eliezer 2009; Felli and Pierattelli 2012a, b; Kjaergaard and

Poulsen 2012; Felli et al. 2012). However the NMR experi-

ments should be tailored to the general properties of IDPs.

Indeed the high extent of flexibility typical of disordered

proteins averages out contributions to chemical shifts that

otherwise would arise from the presence of well-defined

secondary and tertiary structures, causing extensive reso-

nance overlap. The other important characteristic of IDPs

consists in the largely solvent-exposed backbone nuclei that

cause an increase in the exchange rates of amide protons with

the solvent. This may cause broadening beyond detection of

amide proton resonances, in particular close to physiological

conditions (neutral pH, high temperature). For these reasons

heteronuclei (13C, 15N) have always played a major role in

the study of unfolded protein states (Schwalbe et al. 1997;

Hennig et al. 1999; Dyson and Wright 2001, 2004; Mittag

and Forman-Kay 2007). More recently, thanks to the tre-

mendous improvements in instrumental sensitivity, a suite of

exclusively heteronuclear NMR experiments based on 13C

direct detection has been developed to exploit at best the

properties of heteronuclei (Bermel et al. 2006a, 2009a, b;

Novacek et al. 2011, 2012; Takeuchi et al. 2010a, b; Eletsky

et al. 2003; Vögeli et al. 2004, 2005; Richter et al. 2010;

Serber et al. 2000, 2001). Indeed it is well known from the
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first pages of NMR textbooks that the chemical shift dis-

persion does increase when going from protons to hetero-

nuclei (13C, 15N). This general feature also holds in the

absence of a unique 3D structure such as for IDPs as shown in

Fig. 1, which reports the chemical shift ranges observed for

different backbone nuclei in human a-synuclein, a paradig-

matic, well studied IDP. The 1H detected 2D experiments

(1H–13C as well as 1H–15N 2D HSQC spectra) clearly show

an increase in the chemical shift dispersion passing from 1H

to the directly bound heteronucleus, both for 13Ca as well as

for 15N, confirming the importance of exploiting heteronu-

clei to study IDPs. The dispersion of the observed cross peaks

also improves going from the 1H–13C to the 1H–15N 2D

spectrum. Indeed the latter is one of the most widely used

experiments for the characterization of IDPs. Therefore, in

addition to the 2D 1H–15N HSQC spectrum (Fig. 1), corre-

lating 15N to the attached 1H, one can also exploit the cor-

relation of 15N with the attached carbonyl carbon (13C0)
through the 2D CON spectrum (Bermel et al. 2006a), also

reported in Fig. 1 for human a-synuclein. The cross peaks in

the 2D CON spectrum are well dispersed also for this highly

disordered protein of 140 aminoacids, and signals deriving

from proline residues are clearly identifiable due to the

peculiar 15N chemical shift of the imino nitrogen, in principle

providing a richer source of information compared to that

available through 2D 1H–15N correlation spectra. In fact

NMR experiments based on direct 13C carbonyl detection

have been used for the characterization of several IDPs and

the number of novel applications is continuously increasing

(Bermel et al. 2006a, 2012a; Pérez et al. 2009; Hsu et al.

2009; O’Hare et al. 2009; Motackova et al. 2010; Bertini

et al. 2011; Novacek et al. 2012).

The chemical shift dispersion of carbonyl carbons, as

also evident by comparing it with that observed for Cas in

human a-synuclein, is one of the smallest ones observed

for different types of homologous 13C spins in proteins. So

it might seem surprising that the 2D CON spectra are

characterized by such a nice dispersion of the observed

cross peaks. However, it should be noted that the correla-

tions observed in CON spectra involve nuclei belonging to

sequential aminoacids, an aspect that has a significant

impact on the dispersion of the correlations observed in

NMR spectra of IDPs. As noted before, in the absence of a

well-defined protein 3D structure the NMR chemical shifts

of the aminoacid nuclei tend to cluster around the values

predicted for each aminoacid-type, with small additional

contributions arising from the nature of the previous and

following aminoacids in the primary sequence (Schwarz-

inger et al. 2001; Tamiola et al. 2010; Kjaergaard and

Poulsen 2011, 2012). The effect is particularly striking

when observing the 2D 1H–13C correlation map of human

a-synuclein, part of which is shown in Fig. 1 (1Ha–13Ca

portion). Despite the large dispersion of 13C shifts, and the

very high resolution used to acquire the spectrum, the

number of cross peaks that can be resolved is very small,

much less than expected for this 140 aminoacids protein,

essentially due to clustering of correlations that derive from

the same type of aminoacids in specific spectral regions.

Fig. 1 16.4 T 1H–13C HSQC, 1H–15N HSQC and 13C–15N CON

spectra acquired on 13C, 15N human a-synuclein. The extent of 1Ha,
1HN, 13Ca, 13C0, 15N chemical shift dispersion obtained in the 2D

spectra can be fully appreciated in the projections, where the signals

belonging to the backbone nuclei are highlighted by squared boxes.

To enable meaningful comparison of the frequency distribution of

resonances, scales were adjusted to be comparable in Hz (obtain the

same Hz/cm ratios)
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This shows that, while on one hand these characteristic

intra-residue 1H–13C cross peaks provide a clear fingerprint

of different aminoacid-types, they do not help in resolving

spectral overlaps for aminoacids of the same kind.

These general trends for chemical shifts observed in

IDPs are well known and are widely used to predict ran-

dom coil chemical shifts for the nuclei of a protein on the

basis of its primary sequence using typical shifts for each

aminoacid as well as correction factors derived from the

presence of specific aminoacids in positions i(±1) and i(±2)

(Wishart et al. 1995; Schwarzinger et al. 2001; De Simone

et al. 2009; Kjaergaard and Poulsen 2011). These calcu-

lated chemical shifts are generally used as a reference to

compare them with experimentally observed chemical

shifts in order to identify regions characterized by

secondary structural propensities, if any, in IDPs (Marsh

et al. 2006, 2010; Mukrasch et al. 2009; Bertini et al. 2011;

Tamiola and Mulder 2012). These predictors as well as the

body of data acquired on naturally or chemically unstruc-

tured proteins do confirm that the main contributions to

chemical shifts arise from the nature of the aminoacid, with

the direct consequence that intra-residue correlations are

poorly resolved.

It is thus instructive to predict the dispersion of cross

peaks in 2D maps correlating backbone heteronuclei either

coming from the same aminoacid or from neighboring

aminoacids in the primary sequence as shown in Fig. 2,

built taking as an example experimental chemical shifts of

human a-synuclein (BMRB 6968) (Bermel et al. 2006a).

The figure, which reports in the top panels the intra-residue

Fig. 2 Plots of the correlation between C0-Ca, C0-N and Ca-N

generated using as input experimental chemical shifts measured for

human a-synuclein (BMRB 6968)(Bermel et al. 2006a). Axes scales

are in ppm. The comparison between the top panels (intra-residue

correlations) and the bottom panels (inter-residue correlations) clearly

demonstrates that the inter-residue nature of the correlations contrib-

utes dramatically to cross peak dispersion in IDPs. For folded proteins

this is less evident as their nuclei experience much larger contribu-

tions to chemical shifts arising from the presence of secondary and

tertiary structures
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correlations and in the bottom panels the inter-residue ones

for a selected sub-set of backbone heteronuclear spin pairs,

clearly shows that the inter-residue nature of correlations

provides an important contribution to reducing the poten-

tial overlaps in spectra of IDPs. This is likely to be a

general feature for IDPs while it is not so important for

folded proteins which experience many additional contri-

butions to chemical shift dispersion. This observation

explains why the highly sensitive CACO spectrum suffers

from strong overlap when acquired on IDPs, essentially

because of the intra-residue nature of the correlations it

gives, while the CON spectrum, which correlates two

nuclear spins involved in the peptide bond, is instead

characterized by an improved chemical shift dispersion of

the cross peaks.

To exploit this finding we can design inter-residue ver-

sions of the 2D experiments involving backbone hetero-

nuclei such as the inter-CACO and inter-CAN, where the

Ca–N is a very useful correlation for assignment (Takeuchi

et al. 2008, 2010a) but again affected by poor chemical

shift dispersion in the intra-residue mode. The inter-residue

correlations between Ca and C0 spins can easily be detected

by acquiring the 2D CACO plane of CANCO experiments

(Bertini et al. 2004; Bermel et al. 2005b), based on

carbonyl direct detection. Concerning the inter-CAN

experiment, this would of course provide a very interesting

complementary experiment respect to the ones that are

already available thanks to the wide chemical shift range of

both nuclear spins as well as to its inter-residue nature.

However the experiment is based on direct detection of Ca

spins, so that, unless specific isotopic labeling strategies are

employed (Takeuchi et al. 2010a, b), it is very important to

take care of homonuclear 13C decoupling to achieve a good

resolution, in particular for IDPs. Otherwise all the

advantage of going to heteronuclear detection would be

lost by quadrupling/doubling the number of expected sig-

nals for Ca spins that do couple with a Cb spin (except for

glycines), in addition to carbonyls. To this end, several

solutions have recently been proposed in the literature for

the study of large proteins (Bermel et al. 2005a, 2007).

They all rely on acquisition of different independent

components of the in-phase (IP) and antiphase (AP) mul-

tiplets either by allowing full interconversion between the

two (IPAP-type) or only partial (S3E-type), with the latter

requiring about half the time for magnetization to be

transverse (Bermel et al. 2008). Among the different

strategies proposed, we decided to focus on the IPAP-type

approach (Duma et al. 2003; Bermel et al. 2005a, 2007) as

Fig. 3 2D inter-CAN NMR experiment. The delays used D1 =

14.4 ms, D = 9 ms, D2 = 2.2 ms, D3 = 3.6 ms, D0 = 24.8 ms and

D0 0 = 26.6 ms e = t1(0) ? pC180 which is shown as grey pulse in

the middle of 15N chemical shift evolution time. The phase cycle is:

/1 = 4(x), 4(-x), /2 = 2(x), 2(-x), /3 = x, -x, /4 = 8(x), 8(-x),

/DIPAP (IPIP) = x; /DIPAP (APIP) = -y; /DIPAP (IPAP) = -y;

/DIPAP (APAP) = -x; /rec = x, 2(-x), x, -x, 2(x), -x. Quadrature

detection in F1 dimension is obtained by incrementing /2 in a States-

TPPI manner. The coherence transfer pathway exploits the one-bond

scalar couplings 1JHaCa, 1JCaC0,
1JC0N, as schematically illustrated.

The pulse sequence starts with 1H polarization (1H-start) that, after

the first 1H 90� pulse, is transferred to 13Ca through the evolution of

the 1JHaCa, then to 13C0 (through the evolution of the 1JCaC
0), and

finally to 15N (through the evolution of the 1JC0N). Frequency labeling

of 15N is then achieved to create the indirect 15N dimension, followed

by back transfers to 13C0 and then to 13Ca (through the evolution of

the 1JC0N and 1JCaC0 respectively) prior to direct detection of 13Ca.

The four different variants to implement 13Ca homonuclear decou-

pling differ by the position of the band-selective 13C 180� pulses on
13C0, 13Ca, 13Ca/b, indicated using the first three lines in the pulse

scheme
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for most of the IDPs, that are amenable to NMR, transverse

relaxation rates are compatible with its implementation.

The pulse sequence used to acquire the inter-CAN exper-

iment on human a-synuclein is reported in Fig. 3. It starts

with 1Ha polarization, exploits coherence transfer steps

mediated by one-bond scalar couplings (1JHaCa, 1JCaC0,
1JC0N) and the IPAP-type approach to achieve homonuclear
13Ca decoupling (DIPAP). The four different multiplet

components that are acquired to perform homonuclear 13Ca

decoupling are shown as an example in Fig. 4, together

with the final 2D inter-CAN spectrum that can be obtained.

For glycine aminoacids, which lack one of the two large

carbon–carbon homonuclear couplings, it is sufficient to

process the spectra in a different way (Fig. 4, right insert).

As expected, the 2D spectrum is characterized by a good

dispersion of the cross peaks and can thus provide a

valuable tool to investigate IDPs, in particular in cases in

which amide protons are extensively broadened by solvent

exchange processes. On the other hand, increase in trans-

verse relaxation rates of other nature impact on the sensi-

tivity of the experiment.

Concluding we have shown that one important aspect

for the design of experiments optimized for the study of

IDPs, in addition to the large heteronuclear chemical shift

dispersion, is the ability to exploit as much as possible

correlations between nuclei belonging to different amino-

acids to improve the chemical shift dispersion and thus

reduce signal overlap. This can be used as a general con-

cept to implement new multidimensional experiments. The

2D inter-CAN experiment, based on Ca direct detection, is

proposed here as an extra tool, to be used in conjunction

with the 2D CON, to follow chemical shifts of IDPs also in

cases in which amide protons may be broadened beyond

detection.

Experimental part

A sample of 1.0 mM uniformly 13C, 15N labeled human a-

synuclein in 20 mM phosphate buffer at pH 6.5 was pre-

pared as previously described (Bermel et al. 2012b). EDTA

and NaCl were added to reach the final concentration of

0.5 mM and 200 mM, respectively, and 10 % D2O was

added for the lock. All NMR experiments were performed

at 285.5 K, 16.4 T on a Bruker Avance spectrometer

operating at 700.06 MHz 1H and 176.03 MHz 13C fre-

quencies, equipped with a 13C cryogenically cooled pro-

behead optimized for 13C-direct detection. For 13C band-

Fig. 4 16.4 T inter-CAN spectrum acquired on 13C, 15N human a-

synuclein. The portions extracted for an arbitrary peak from the four

different sub-spectra of the inter-CAN before combining them to

perform homonuclear decoupling and their combination to obtain a

singlet are reported on the left. In the insert on the right, the region

where glycine residues resonate taken from the spectrum processed

omitting the removal of the JCaCb coupling is reported (see

Experimental part). The inter-CAN experiment was recorded with

16 scans per increment with an inter-scan delay of 1.2 s for a total

duration of 14 h. In the obtained 2D spectrum the average distance

between two neighbors, which is a well-accepted measure of the

dispersion of a set of points in the n-dimensional space (Clark and

Evans, 1954), is 0.72 ppm, while it would be only 0.42 ppm in the

corresponding CAN experiment
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selective p/2 and p flip angle pulses Q5 (or time reversed

Q5) and Q3 shapes (Emsley and Bodenhausen 1992) of

durations of 300 and 220 ls, respectively, were used,

except for the p pulses that should be band-selective on the

Ca region (Q3, 860 ls) and for the adiabatic p pulse to

invert both C0 and Ca (smoothed Chirp 500 ls, 25 %

smoothing, 80 kHz sweep, 11.3 kHz RF field strength

(Boehlen and Bodenhausen 1993)). The 13C band selective

pulses on Cali, Ca, and C0 were given at the center of each

region and the adiabatic pulse was adjusted to cover the

entire 13C region. Decoupling of 1H and 15N was achieved

with waltz16 (Shaka et al. 1983) (1.7 kHz) and garp4

(Shaka et al. 1985) (1.0 kHz) sequences, respectively. All

gradients employed had 1 ms of duration. In experiments

that employ the DIPAP block (Bermel et al. 2005a, 2006b),

for each time increment in the indirect dimension, four

FIDs were separately stored, and the resulting sub-matrices

were added and subtracted in pairs to separate the four

multiplet components, then shifted by (± JC0Ca/2) and

(± JCaCb/2 Hz) and summed again to obtain a singlet. The

spin-state-selection approach can also be implemented to

achieve 15N decoupling in order to be able to extend the

acquisition of the FID without limitations imposed by 15N

decoupling (Bermel et al. 2009a). The other experimental

parameters used to acquire spectra shown are described in

the figure captions. Spectra were acquired and processed

using the standard Bruker TopSpin 1.3 software.
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